
## Interactive Web Accessible Gamma-Spectrum Generator & EasyMonteCarlo Tools

## A.N. Berlizov

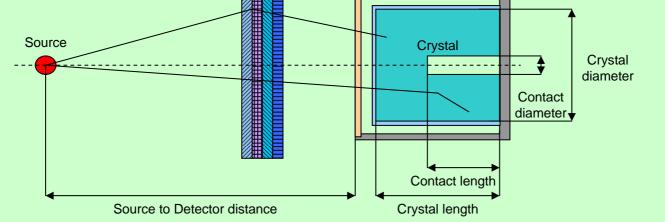
## ITU - Institute for Transuranium Elements

Karlsruhe - Germany

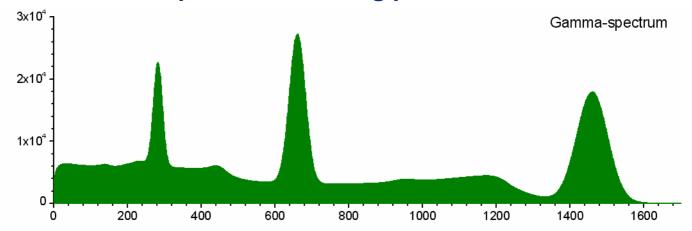
http://itu.jrc.ec.europa.eu/ http://www.jrc.ec.europa.eu/



## Outline


- Simulation approach
- Features implemented
- Some examples
- Future work
- Exercises

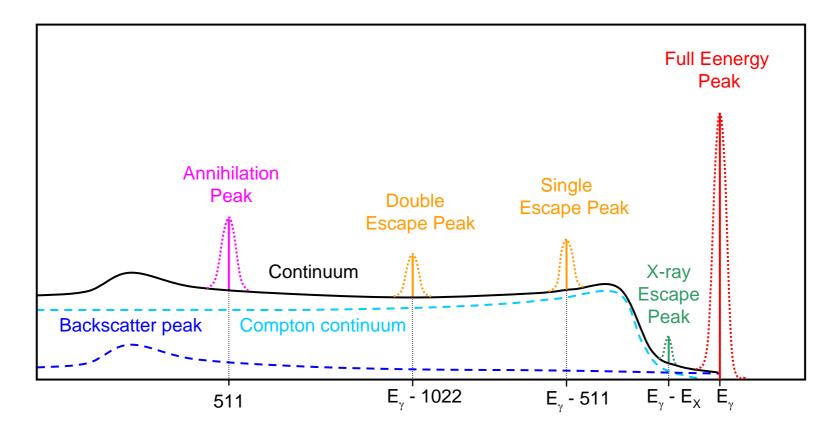
# nucleonica











#### Spectrum modeling procedure:







**Detector response profile model:** 



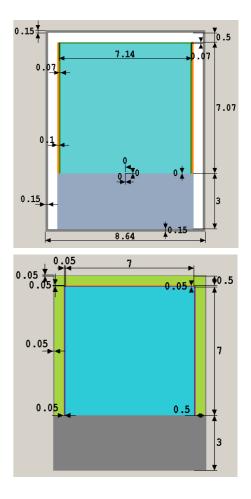


Institute for Transuranium Elements

10th Nuclear Science Training Course with NUCLEONICA, Cesme, Turkey, 8-10 October, 2008

#### **Detector Reference Response Profile DATABASE:**

#### Method:

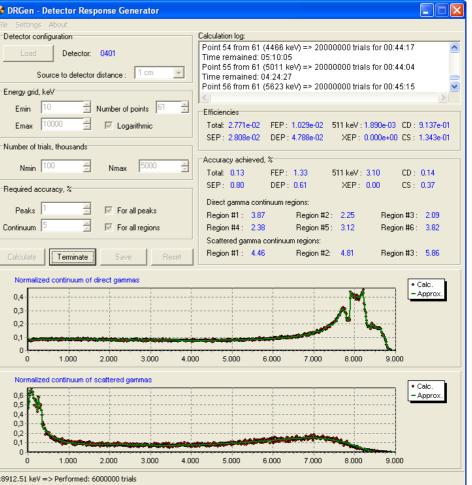

• Monte Carlo simulation using specially developed and validated program – DRGen (*Detector Response Generator*)

#### **Content:**

- Peak-to-Total efficiency ratios for FEP, SEP, DEP, XEP, and 511 keV annihilation peak
- Continuum-to-Total efficiency ratios for Compton continuum and Backscatter "peak" distribution
- Parameterized shapes of Compton continuum and Backscatter "peak" distribution

#### Scope:

- Detectors: Nal and High Pure Ge (HPGe)
- Crystal length and diameter grid: 20 mm 120 mm with 10 mm step
- Photon energy grid: 61 points, 10 keV 10 MeV
- Source-to-detector distance grid: 0 mm, 10 mm, 50 mm, 250 mm
- Total number of profiles generated: 2 x 121 x 61 x 4 = 59048



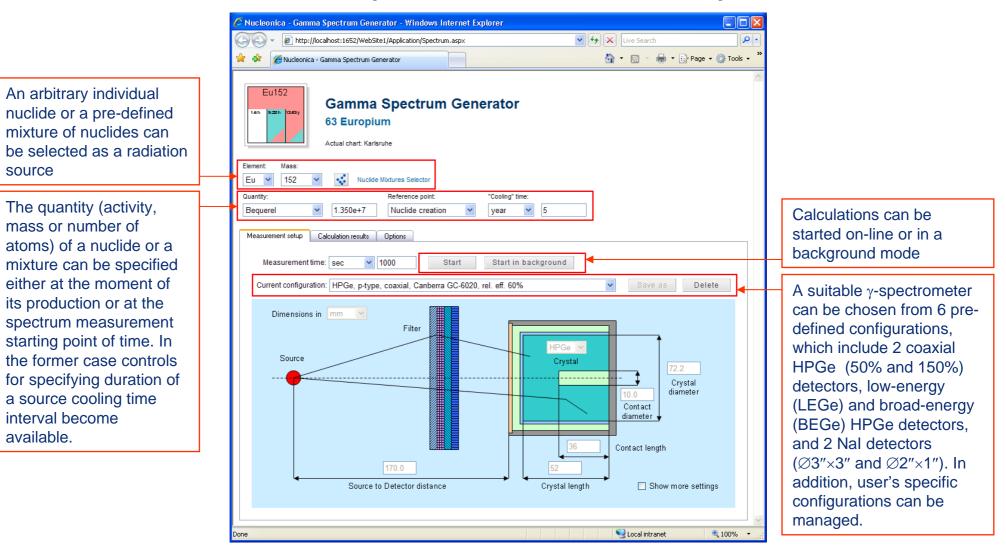





#### DRGen (Detector Response Generator): creating the Detector Reference Response Profile Database

| DRGen - Detector Response Generator      |                                                                  | 😒 DRGen - Detector Respons     |
|------------------------------------------|------------------------------------------------------------------|--------------------------------|
| Settings About                           |                                                                  | File Settings About            |
| etector configuration                    | Calculation log:                                                 | Detector configuration         |
| Load Detector: 0010                      | Point 1 from 61 (10 keV) => 1000000 trials for 12:00:27 AM       | Load Detector: 040             |
|                                          | Point 2 from 61 (11 keV) => 3000000 trials for 12:01:45 AM       |                                |
| Source to detector distance :            | Time remained: 1:44:07 AM                                        | Source to detector dista       |
| nergy grid, keV                          | Point 3 from 61 (12 keV) => 2000000 trials for 12:01:10 AM       | Energy grid, keV               |
| Emin 10 🚽 Number of points 61 🚔          |                                                                  | Emin <sup>10</sup> 🗄 Nun       |
|                                          | Efficiencies                                                     |                                |
| Emax 10000 🗾 🗹 Logarithmic               | Total: 2.610e-01 FEP: 8.724e-01 511 keV: 0.000e+00 CD: 1.269e-01 | Emax 10000                     |
| umber of trials, thousands               | SEP: 0.000e+00 DEP: 0.000e+00 XEP: 7.202e-04 CS: 1.116e-01       | Number of trials, thousands    |
|                                          | Accuracy achieved, %                                             |                                |
| Nmin 100 💌 Nmax 5000 💌                   | Total: 0.04 FEP: 0.04 511 keV: 0.00 CD: 0.14                     | Nmin 100                       |
|                                          | SEP: 0.00 DEP: 0.00 XEP: 1.80 CS: 0.14                           |                                |
| equired accuracy, %                      |                                                                  | Required accuracy, %           |
| Peaks 🛛 🖉 🔽 For all peaks                | Direct gamma continuum regions:                                  | Peaks 1                        |
|                                          | Region #1: 0.00 Region #2: 0.00 Region #3: 0.00                  |                                |
| ontinuum 5 🔄 🔄 🔽 For all regions         | Region #4 : 0.00 Region #5 : 0.92 Region #6 : 1.06               | Continuum 🗧 🚊 🕅                |
|                                          | Scattered gamma continuum regions:                               |                                |
| Calculate Terminate Save Reset           | Region #1 : 0.00 Region #2: 1.90 Region #3 : 0.92                | Calculate Terminate            |
|                                          |                                                                  |                                |
| Normalized continuum of direct gammas    | Calc.                                                            | Normalized continuum of direc  |
| 20                                       |                                                                  | 0,4                            |
| 15                                       |                                                                  | 0,3                            |
| 10                                       |                                                                  | 0,2                            |
| 5                                        |                                                                  | 0,1                            |
| 0                                        |                                                                  | 0                              |
| 0 20 40 60                               | 80 100 120 140 160                                               | 0 1.000 2.0                    |
| Normalized continuum of scattered gammas |                                                                  | Normalized continuum of scatt  |
| Normalized continuum of scattered gammas | • Calc.                                                          | ( <b>7</b>                     |
| 20                                       | - Approx.                                                        | 0,6 <b>6</b><br>0,5 <b>1 4</b> |
|                                          |                                                                  | 0,4                            |
| 15                                       |                                                                  | 0,3                            |
| 15                                       |                                                                  |                                |
|                                          |                                                                  | 0,2                            |
| 10                                       | 80 100 120 140 160                                               |                                |

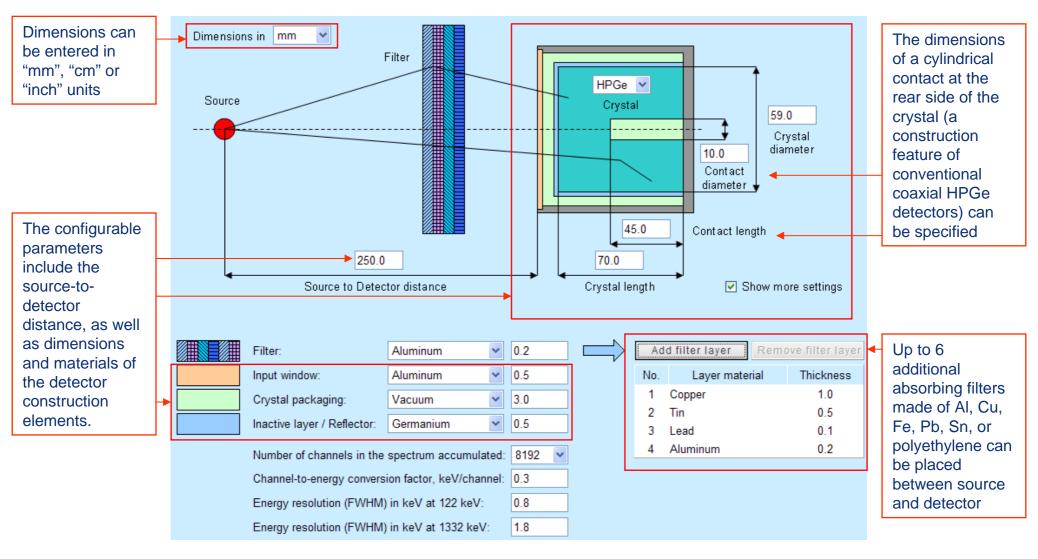





.



10th Nuclear Science Training Course with NUCLEONICA, Cesme, Turkey, 8-10 October, 2008


#### **Features implemented: Measurement setup**







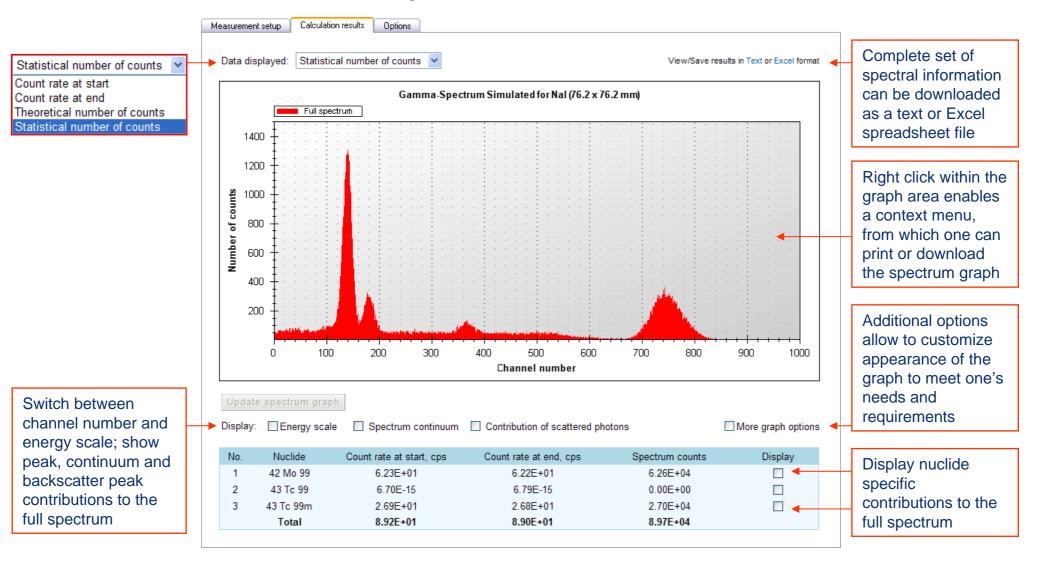
#### **Features implemented: Measurement setup**







10th Nuclear Science Training Course with NUCLEONICA, Cesme, Turkey, 8-10 October, 2008


#### **Features implemented: Options**

|                                                                                                                                | 🖉 Nucleonica - Gamma Spectrum Generator - Windows Internet Explorer                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------------------------------------------------------------------------------------------------------|
|                                                                                                                                | COC - E http://localhost:1652/WebSite1/Application/Spectrum.aspx#                                                                                                                                                                                                                                                                                                                    | 🖌 🛃 🔛 Live Search                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P - |                                                                                                         |
|                                                                                                                                | 😭 🏟 🍘 Nucleonica - Gamma Spectrum Generator                                                                                                                                                                                                                                                                                                                                          | 🟠 🔹 🔝 🕤 🖶 🖬 Page 🕶 🎯 Tools                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | • » |                                                                                                         |
|                                                                                                                                | Gamma Spectrum Generator   Natural Uranium   Nuclide Mixtures:   Natural Uranium   Nuclide Selector   Total activity:   Bequerel   2.557e+004                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | K   |                                                                                                         |
| Efficiency Graph<br>can be activated<br>in the Calculation<br>Results output                                                   | Measurement setup       Calculation results       Options         Gamma Spectrum Generator Settings:       Image: Consider decay transformations during cooling and counting time intervals         Image: Consider decay transformations during cooling and counting time intervals         Image: Image: Consider decay transformations during cooling and counting time intervals |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | Decay<br>calculations can<br>be enabled that<br>will allow<br>contributions                             |
| The backscatter<br>peak simulation<br>can be switched<br>on/off, and its<br>contribution to<br>the spectrum can<br>be adjusted | 0.01       Decay Engine's accuracy factor         Image: Consider effects of backscatter radiation         1.0       Backscatter peak normalisation factor                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×   | from decay<br>products, being<br>accumulated<br>during source<br>cooling and<br>spectrum<br>measurement |
|                                                                                                                                | Done                                                                                                                                                                                                                                                                                                                                                                                 | Second Se | •   | time intervals                                                                                          |



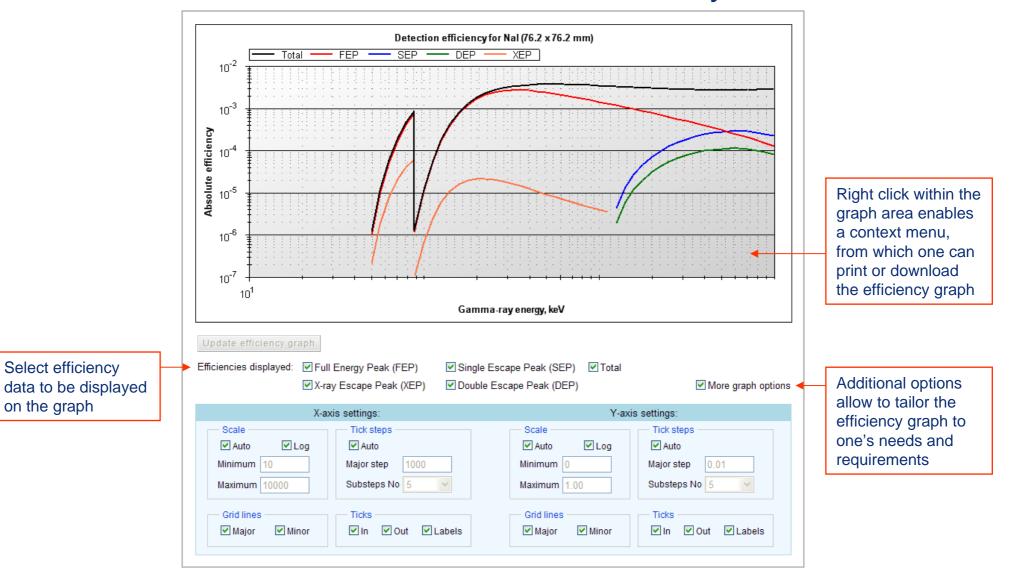


#### **Features implemented: Calculation results**








#### **Calculation results : Detailed Spectral Data in Excel Spreadsheet**

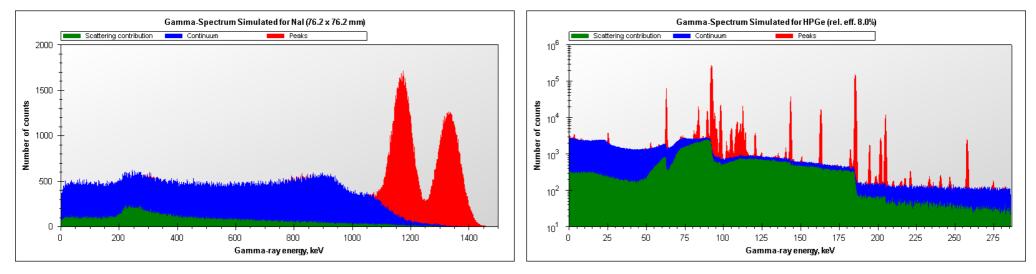
| Microsoft Excel - GC-6020_Cs137_170m  | m_Spectrum.                  | xls                       |                |                 |                            | <b>1</b> | Aicrosoft Ex    | cel - GC-6020_         | Cs137_170              | mm_Spectrum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .xls                   |                        |                        |                        |                      |                |                         |
|---------------------------------------|------------------------------|---------------------------|----------------|-----------------|----------------------------|----------|-----------------|------------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------|------------------------|------------------------|----------------------|----------------|-------------------------|
|                                       | Data Window                  | Help                      | /pe a question | for help 👻 🗕 🕇  | ē ×                        | :2       | Eile Edit       | View Insert F          | ormat Iools            | Rea With                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | de Sp                  | ocific                 | Data                   |                        | Type a quest         | ion for help   |                         |
|                                       | JI E ₫I                      |                           |                | - 🖓 - <u>A</u>  | - 2                        | In       |                 | 3-0                    | Arial                  | Nucli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ue op                  | <b>F</b> CIII          |                        | \$ % ,                 | 0 .00 E              |                | 3 - A                   |
| 130 🖛 🏂                               |                              |                           |                |                 |                            | -        | A21             | • fx                   |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |                        |                        |                        | 100 410 14           |                | -                       |
| AB                                    | C                            | D                         |                | E               |                            | _        |                 |                        | 0                      | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        | -                      | F                      | 0                      | 1                    |                | 1                       |
| 1 Nucleonica - GAMMA SPECTRUM GEN     |                              | rsion 100                 | 1              | <b>L</b>        | <u>- ^</u>                 |          | A               | В                      | C                      | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        | E                      | F                      | G                      | н                    |                |                         |
| 2                                     |                              |                           |                |                 |                            | 1        | Nuclide         | Ancestor               |                        | Activity, Bq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        | ber of                 | Count r                |                        |                      | er of cou      |                         |
| 3 File content: Calculation Results   |                              |                           |                |                 | -                          | 2        |                 |                        | at sta                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |                        | at start               | at end                 | theor.               |                | tatist.                 |
| 4 Created: 4/17/2008 3:21:29 PM (UTC) |                              |                           |                |                 | -                          | 3        | 55 Cs 137       |                        |                        | and the second se |                        |                        | 5.652E-08              | 5.652E-08              |                      |                | 00E+00                  |
| 5                                     |                              |                           |                |                 |                            | 4        | 56 Ba 137       |                        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |                        | .177E-03               | 7.144E-03              |                      |                | 00E+00                  |
| 6 SPECTROMETER:                       |                              |                           |                |                 |                            | 5        | TOTAL:          |                        | 0.000E                 | +00 0.000E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +00 0.000              | 0E+00                  | 7.177E-03              | 7.144E-03              | 7.160E-0             | 3 0.00         | 00E+00                  |
| 7 Configuration name                  | Noname                       |                           |                |                 |                            | 6        |                 |                        |                        | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |                        | 7.1                    |                        |                      |                |                         |
| B Crystal type                        | HPGe                         |                           |                |                 |                            | 14 -     | Par             | ameters \ Nucli        | des (X- and            | Gamma-rays /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Efficiency / 5         | 56 Ba 137m             | < <                    |                        |                      |                | >                       |
| Crystal length                        | 52.00                        | mm                        |                |                 | -                          | Rea      | ty              |                        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |                        |                        |                        |                      |                |                         |
| O Crystal diameter                    | 72.20                        | mm                        |                |                 |                            |          |                 |                        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |                        |                        |                        |                      |                |                         |
| 1 Contact length                      | 36.00                        | mm                        |                |                 |                            |          |                 |                        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |                        |                        |                        |                      |                |                         |
| 2 Contact diameter                    | 10.00                        | mm                        |                |                 |                            | MI MI    | crosoft Excel - | GC-6020 Cs137 1        | 70mm Spectrum          | m.xls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |                        |                        |                        |                      |                | <b>M</b> E              |
| 3 Inactive layer                      | 0.90                         | mm                        | Germani        | ium             |                            | :301     |                 | Insert Format To       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |                        |                        |                        | Two                  | a question for | r help                  |
| 4 Crystal packaging                   | 5.00                         | mm                        | Vacuum         |                 |                            |          |                 |                        |                        | Gamm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a and                  | i X-ra                 | v Dat                  | a                      | \$ % , 10 .          |                |                         |
| 5 Detector input window               | 1.50                         | mm                        | Aluminu        | m               |                            |          |                 | 3 12 12 E.             |                        | 2-21 🛄 🖤                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e : Ana                | - 10-                  | втп                    | 응 음 별 별                | \$ % .00 +           |                | 표 • 💁 • 🛓               |
| 6 Number of additional filters        | 0.00                         |                           |                |                 |                            | _        | A12 -           | fx<br>B                | c r                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                      |                        |                        |                        |                      | 12             |                         |
| Filter No.1                           | 0.00                         | mm                        |                |                 |                            | -        | A               | -                      |                        | Emice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ion rate. 1/s          | G Photons              | Peak red               | ion counts             | Detection eff        | ciency         | Ancestor's              |
| Filter No.2                           | 0. Micros                    | soft Excel -              | GC-6020 C      | s137_170mm_S    | nectrum vis                |          |                 |                        | y, keV X/G             | ray at start                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | at end                 | emitted                | peak area              | peak bkgr              | total                | FEP            | MDA(0), Bq              |
| Filter No.3                           | 0                            | 20072                     |                |                 |                            |          |                 |                        | 3.50 G                 | 0.0006.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.800E-06              | 5.800E-06              | 2.715E-08              | 4.094E-05              | 7.530E-03 4          | 681E-03        | 1.441E+08               |
| D Filter No.4                         | and the second second second | <u>E</u> dit <u>V</u> iew | Insert For     | ffi <b>cien</b> | a <u>Window</u> <u>H</u> e | elp.     |                 | _ 8 ×                  | 47 X                   | 9.837E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        | 9.815E-03              | 0.000E+00              | 2.757E-05              |                      | 000E+00        | NAN                     |
| 1 Filter No.5                         |                              | Arial                     |                | IIICIEII        | Cy Do                      | lld,     | %               | • 🗞 • <u>A</u> • 🚆     | .82 X                  | 1.951E-02<br>3.600E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        | 1.947E-02<br>3.592E-02 | 5.198E-07<br>1.137E-06 | 3.363E-05<br>3.301E-05 |                      | .676E-05       | 9.635E+08<br>1.997E+08  |
| 2 Filter No.6                         | 0 A1                         | +                         | f≽ E.k         | eV              |                            |          |                 |                        | .19 A                  | 1.310E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        | 1.307E-02              | 2.193E-06              | 3.211E-05              |                      | .681E-04       | 5.304E+07               |
| 3 FWHM at 122 keV                     | 0                            | A                         | В              | C               | D                          |          | E               | F 🗖                    | 1.66 G                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        | 8.481E-01              | 1.960E-03              | 2.144E-06              |                      | 311E-03        | 1.964E+03               |
| 4 FWHM at 1332.5 keV                  | 1 1 E                        | , keV                     | FEP Eff.       | XEP Eff.        | SEP Eff.                   | DE       |                 | otal Eff.              |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |                        |                        |                        |                      |                |                         |
| 5 Number of channels                  | 8 2 1.0                      | 00E+01                    | 8.505E-15      | 0.000E+00       | 0.000E+00                  | 0.00     | 0E+00 8.9       | 505E-15                | d Gamma-rays           | Efficiency / 56 Ba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 137m / 55 Cs 13        | 7 / Full spectru       | m , <                  |                        | 10                   |                |                         |
| 6 Channel-to-Energy conversion        | A 3 1.0                      | 36E+01                    | 1.158E-13      | 0.000E+00       | 0.000E+00                  | 0.00     | 0E+00 1.3       | 218E-13                |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |                        |                        |                        |                      |                |                         |
| 7 Source-to-Detector distance         |                              | 13E+03                    | 1.576E-04      | 0.000E+00       | 2.510E-04                  |          |                 | 546E-03                |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |                        |                        |                        |                      |                |                         |
| 8 Spectrum measurement time           | 1 66 1.0                     | 00E+04                    | 1.305E-04      | 0.000E+00       | 2.304E-04                  | 1.17     | '6E-04 4.       | 578E-03                |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |                        |                        |                        |                      |                |                         |
| 9                                     | 67                           |                           |                |                 |                            |          |                 |                        | 137_170mm              | Spectrum.xls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |                        |                        |                        |                      |                |                         |
| 0 SOURCE:                             |                              |                           |                | 2.5 keV photons |                            |          | 04E-04          |                        | at Tools Da            | ata Window He                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | lp                     |                        |                        |                        | Type a qu            | estion for hel | ip 0                    |
| 1 Nuclide                             | E8                           | tive efficie              | ncy for 1332   | .5 keV photons  | at 25 cm:                  | 5        | 6.70 %          |                        | 0.10                   | Gan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nma S                  | spect                  | rum _                  | :                      | · *.0 .00 =          |                | - A- A                  |
| 2 Quantity                            |                              | IZ X- and G               | Gamma-rays     | Efficiency / 56 | Ba 137m                    |          |                 | >                      |                        | 5 Charles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10                     |                        |                        | · · · ·                | / .00 <b>→</b> .0 =? |                | · <u>·</u>              |
| Reference point of time               | N Ready                      | N                         | , · · · ,      |                 |                            |          |                 |                        | nel number             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                      | -                      |                        |                        |                      |                |                         |
| 4 Source cooling interval             | 30                           | min                       |                |                 |                            |          |                 |                        | D                      | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | F                      | G                      | Н                      |                        | J                    |                | K                       |
| 5                                     |                              |                           |                |                 |                            | 1        | Energy, keV     |                        | nt rate at star        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        | unt rate at e          |                        |                        | Theoretical nur      |                |                         |
| 6 CALCULATION:                        |                              |                           |                |                 | -                          | 2        |                 | conunuum               | Scattered              | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Continuum              | Scattere               |                        |                        |                      |                | Total                   |
| Consider decay transformations        | Yes                          |                           |                |                 |                            | 3        | 0.20            | 2.637E-06              | 8.042E-07              | 2.650E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.625E-06              | 8.006E-0               |                        |                        |                      |                | 2.644E-06               |
| Include gammas of daughter nuclides   | Yes                          |                           |                |                 | +                          | 4        | 0.60            | 3.185E-06              | 9.725E-07              | 3.218E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.171E-06              | 9.681E-0               |                        |                        |                      |                | 3.211E-06               |
| Decay engine's accuracy factor        | 0.01                         |                           |                |                 |                            | 5        | 1.00            | 3.335E-06<br>3.381E-06 | 1.019E-06<br>1.035E-06 | 3.376E-06<br>3.394E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.320E-06<br>3.366E-06 | 1.015E-0<br>1.030E-0   |                        |                        |                      |                | 3.368E-06<br>3.387E-06  |
| Consider backscatter radiation        | Yes                          |                           |                |                 |                            | ь<br>7   | 1.40            | 3.381E-06<br>3.400E-06 | 1.035E-06              | 3.394E-06<br>3.401E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.366E-06              | 1.030E-0<br>1.037E-0   |                        |                        |                      |                | 3.387 E-06<br>3.393E-06 |
| Backscatter peak normalization factor | 2                            |                           |                |                 |                            | 8        | 2.20            | 3.400E-06<br>3.411E-06 | 1.042E-06              | 3.401E-06<br>3.411E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.385E-06<br>3.396E-06 | 1.03/E-0<br>1.042E-0   |                        |                        |                      |                | 3.393E-06               |
|                                       | -                            |                           |                |                 | 100                        | 9        | 2.20            | 3.411E-06<br>3.421E-06 | 1.046E-06<br>1.050E-06 | 3.411E-06<br>3.421E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.396E-06<br>3.405E-06 | 1.042E-0<br>1.046E-0   |                        |                        |                      |                | 3.404E-06<br>3.413E-06  |
|                                       |                              | 1000                      |                |                 |                            |          | 1 1 1 = 00-1    |                        | / FE Call              | 1.4/15-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | / ALCON-OD             | ThenE-1                |                        | -00 1 31413            | -04                  |                | 14130-10                |
| Parameters / Nuclides / X- and G      | amorea your /r               |                           |                |                 | >                          | 14 4     | H / ETTCH       | ency 👌 56 Ba 137       | m / 55 (S 13)          | / Full spectrum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | /                      |                        |                        |                        |                      |                |                         |





#### **Calculation results : Detection Efficiency**



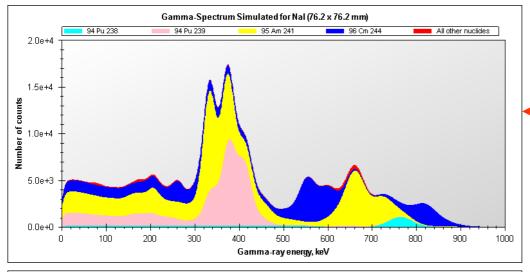


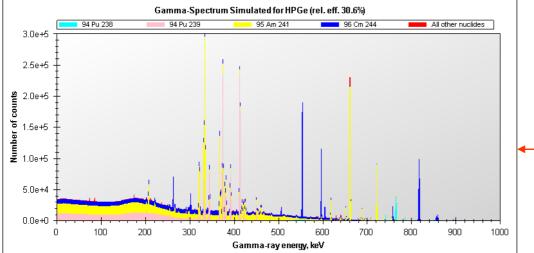



**Examples:** 

100 kBq <sup>60</sup>Co

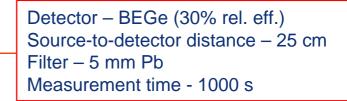






Detector - Nal ( $\emptyset 3'' \times 3''$ ) Source-to-detector distance - 25 cm Measurement time - 1000 s Detector – LEGe (20 mm  $\times$  2800 mm<sup>2</sup>) Source-to-detector distance – 25 mm Filter – 0.5 mm Sn Measurement time - 10<sup>5</sup> s





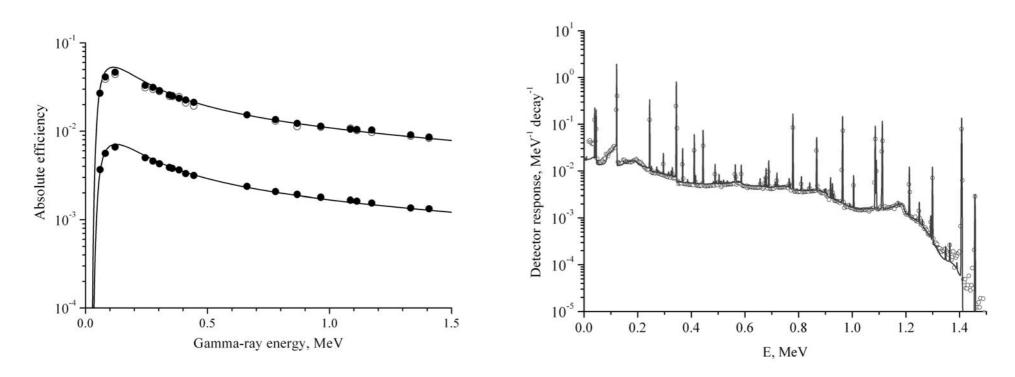

#### **Examples:**





Detector – Nal ( $\emptyset$ 3"×3") Source-to-detector distance – 25 cm Filter – 5 mm Pb Measurement time - 1000 s

#### Actinides extracted from 1 kg 6-yearaged PWR spent fuel. Activity - 5.25 TBq






Institute for Transuranium Elements

10th Nuclear Science Training Course with NUCLEONICA, Cesme, Turkey, 8-10 October, 2008

#### **Example:** Results of the experimental validation with 60% HPGe coaxial detector



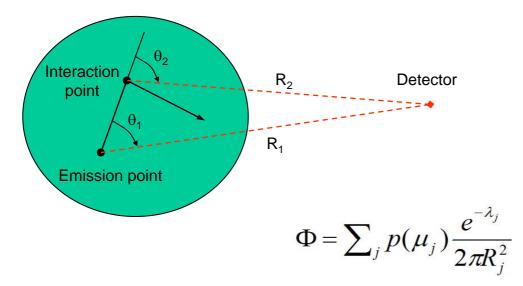
Full Energy Peak efficiency as a function of the photon energy: circles – experimental values, curve – calculated. Two sets of data refer to the source location at 5 cm and 17 cm distances from the detector end cap.

Calculated (curve) and experimental (circles) detector responses for <sup>152</sup>Eu source at 17 cm distance from the detector end cap.





#### Nucleonica : Easy Monte Carlo for Gamma & Neutron Dosimetry & Shielding Calculations through Web


| 10.47 m 5.27 y                                                                                                                     | easyMonteCarlo<br>27 Cobalt<br>al chart: Karlsruhe |               | Dosimetry & Shielding w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | version: 2008.09.24 07:05:08 |
|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| Element Mass                                                                                                                       | Mixture selector                                   |               | Shield                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Detector                     |
| Co 🖌 60                                                                                                                            | S 😪                                                | Compound      | Paraffin 🛛 👻                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | O Particle flux              |
| Activity (Bq) 🖌 1E+06                                                                                                              | 6                                                  | Element       | Pb 🍟                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Oose rate                    |
| Start Stor<br>Geometry Source Options                                                                                              | s Results Input Parameters Sr                      | ervice Output |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |
| <ul> <li>⊙ Gamma emitter</li> <li>○ Neutron emitter</li> <li>Source Diameter</li> <li>10</li> <li>10</li> <li>Source to</li> </ul> |                                                    | nield 50      | Dimension in the second | Detector                     |





#### Variance Reduction Example: Point Detector Tally

For very small volumes and heavily shielded sources it can be almost impossible to get either a track-length or surface crossing estimate because of the low probability of crossing into the small volume or because of the very low particle flux outside a heavily shielded object. In such cases the use of the **Point Detector Tally** (one of the **Variance Reduction Techniques**) can provide much greater efficiency (FOM) of the calculation.



In the **Point Detector** approach the tally is scored, first, when particles emitted from the source, and, then, after each interaction of primary particles, by calculating the probability for all secondary particles to be emitted or scattered directly to the detector.

The approach therefore is also frequently called as the **Next Event Estimator**.

 $p(\mu)$  – probability density function for a particle to be emitted / scattered into detector,

- $\mu$  cosine of angle between particle trajectory and detector,
- R distance to detector,
- $\boldsymbol{\lambda}$  total mean free path to detector.



### **NUCLEONICA: GSG & EMC Validation**

Institute for Transuraniu Elements

10th Nuclear Science Training Course with NUCLEONICA, Cesme, Turkey, 8-10 October, 2008











### Future work:

- Include simulation of the spectrum distortion effects (e.g. due to coincidence summing and energy resolution deterioration), which may appear in measurements involving elevated count rates and small source-to-detector distances.
- Extend the detector response profile database to include LaBr<sub>3</sub> scintillators that, because of their much superior energy resolution, start to replace traditional Nal crystals in many applications.
- Include self-attenuation effects (by combining GSG and EMC modules), which would allow more realistic simulation of gamma-spectra from voluminous sources.
- Include background gamma spectrum from naturally occurring radionuclides, which will make the spectrum shape and MDA evaluations more realistic.

## Thanks for your attention !

## nucleonica